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PREFACE

The work on Lumped Element Impedance Transformers is one of a series
resulting from a study carried on in the Electrical Engineering Department
of the Carnegie Institute of Technology on exponential line section pulse
transformers. In particular this report covers a generalization of the
problem considered by T. J. 0'Donnell (an earlier report in this series)
in "Lumped Circuit Analogs of Tapered Transmission Lines".

This work described in this report has been supported jointly by
Carnegie Institute of Technology and Office of Naval Research Contract

N7onr 30306



Introduction

The transient properties of tapered transmission lines for use as
pulse transformers have been extensively investigated and described in
earlier reports of this series. One report has dealt with the possibilities
of lumped circuit analogs of tapered transmission lines. Owing to
restrictions placed on certain of the network properties incorporated in
these analogs there has been reason to believe that more advantageous
broad-band transformations could be achieved by a modified analytical
attack on the problem. This report is concerned with such a modified
attack and shows, in fact, that improved characteristics can be obtained
i.e., greater bandwidth for the same transformation ratio, or greater
transformation ratio for the same bandwidth, with a specified number of
circuit elements.

This report constitutes a dissertation presented by David H. Geipel
in practical fulfillment of the requirements for the degree of Doctor of

Philosophy in Electrical Engineering at Carnegie Institute of Technology.
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SUMMARY

This thesis is concerned with the synthesis of lumped element net-
works consisting of three, four or five meshes which act so as to trans-
form impedances, independent of frequency, The networks are designed
over all--without specified impedance conc.tions at interior junctions=-
by applying a necessary and sufficient condition for impedance transfor-
mation to the impedance determinant of the complete network., Within this
framework, steps are taken to insure single band-pass operations and,
wherever possible, simplicity and economy dictate the selection of elements.

The bandwidth ratio, the ratio of upper cutoff frequency to lower
cutoff frequency, as a function of impedance transformation retio is used
as a criterion of performance, and expressions for this parameter are
given for each of the networks considered., In the three and the five mesh
cases, networks corresponding to maximum bendwidth ratio are obtained.

The means of finding the value of source resistence which gives optimum
matching over the pass-tand and the voltage trensfer function are indicated
by examples involving three, three mesh networks, Experimental verifica-
tion of the theory and of the efficacy of assuming lossless elements is also
included.

In addition to allowing the realization of impedance transforming
networks with larger bandwidth ratios and much greater flexitility than
hitherto available, this investigation seems to indicate that proper ex-
ploitation of the freedom made available by relaxing the condition of
impedance matching at interior junctions will lead to superior tapered
filters.



INTRODUCTION

The purpose of this thesis i1s to present a simple means of synthe-
sizing impedance transformers, using only lumped inductors and capseitors,
that have wider bandwidths and greater flexibility than those hitherto
available, This greater flexibility is manifested in the ability of those
networks to permit, for any given impedance transformation ratio, a renge
of bandwidth ratio values. This 18 in contrast to the previous netvork
designs which possess & strict one-to-one bandwidth ratio versus imped-
ance transformation ratio charascteristic., The approach used in the work
that follows depends on treating & network of the required complexity as
& complete entity rather than designing basic sub-units which are then
cascaded to form the complete network. It was felt that by doing this
the constraints imvlicit in requiring that interior junctions be imped-
ance matched would te relaxedj and, therefore, one would te more free to
choose component values that lead to improved network designs,

A great amount of work has been done on all kinds of impedance
transforming structures. Modern requirements for broad band impedance
matching devices heve led in the recent past to a great amount of inves-
tigation of tupered trensmission lines. Most work has been done on the
transmission lines utilizing en exponential taper because of the relative
ease of mathematical enalysis and physical realizability. In this type
of line the capacitance and inductance per unit length vary, reciprocally
with each other, as an exponential function of distance elong the line,

Burrowsl)and Wheeleiz)were among the first to describe the steady

References will be numbereC consecutively and appear in the bibli-
orrephy at the end of the thesis,



4

"3=
state behavior of such lines. More recently Schetz and w1111am$3)’(4)
have analytically and experimentally determined the transient response
of these structures and found that they are best suited to transforming
extremely short duration pulses with fast rise times and high peak powers.
Unfortunately, these structures are physically large and unwieldly espe-
cially where larger ratios of transformation are involved, In an effort
to avoid this difficulty some work has teen done on a transmission line
utilizing a helicelly wound inner conductor in which either the pitch
or the turns density 1s made to vary in an exponential fashioss). This
is in contrast to the originel method of using en exponentially flared
tubing as the inner conductor,

In addition to the helicel line as a meens of circumventing the
undesirable length of the exponentisl line sore effort has been directed
towerds synthesizing lumped element anelogs of the tapered transmission
line, Thece are generelly referred to as tapered artificial lines or
tapered filters,

Tapered filters designed to cperate retween different impedance
levels are not & recent inovetion., Patents issued tc Nortoﬁs) and Dietzgv)
indicate methods of designing tapered filters. Norton seems to be the
first to have used the idea of determining e dissymmetricel circuit which
is equivalent to a symmetrical section plus an ideal transformer.

Gladwin(a)

y using the equivalences of Norton, shows many applications

of these circuits in addition to showing that such networks must be of
the tand-pass type. Dietze’s method consisted simply of cascading symme-
tricel sectlons having identicul transfer constants but exponentially

increasing characteristic impedances., Thus, the trensition from a low

impedance to & high impedance level is made more gradual with a consequant
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improvement in performance., (See Figure (1)

In his recent investigations 0 Donnelig), following the method of
Wheeler and Murnaghaslo), has calculated the ratio of output to input
image impedances for Dietze’s structure and concluded that it approaches
the desired constency only in the high frequency attenuation band while
having the most reapid variation in all but the lowest pass band. This
in addition to the atsence of & general design procedure induced O’Donnell
to investigate other means of synthesizing tapered filters which would have
ratios of output to input imape impedances that were constant, independent
of frequency.

0’Donnell ‘s method consisted of matching on an image impedance basis
dissymmetrical T or n sections which have different input and output image
impedences as shown in Figures (2) and (3).

4y
In the first case treated by 0’Donnell the relationship X = r?

1
k-1
was enforced. This case is analogous to the exponentisl taper and re-

quired that a symmetricel section of unity trensformation ratio with char-
acteristic impedance equal to 211 preceed the transforming network in
order to eliminate a non-realizeble impedance. The second case considered
by 0'Donnell was predicated on the condition that no non-realizable element
would occur in the transforming network proper. The resulting network
possessed a taper law whick he called the Tschebyscheff taper. More de=~
tailed references will be made later to the two networks mentioned atove
and to their respective cheracteristics,

In attempting to synthesize a network possessing certein given char-
acteristics one can either elect to use the classicel theory of four ter-
minel networks or the more modern techniques which utilize a function

theoretic approach. The latter are perhaps best typified by the potential
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analogue methods of Darlingtosll) or the two terminal impedance synthesis
of Brunglz). There are available also the network synthesis methods of
Cauer and Bodé}a) vhich are based on the symmetrical lattice and allow any
degree of approximetion to given realizable filter characteristics.
Darlington has developed a general synthesis procedure for reccilve four
terminal ladder networks terminated by artitrary resistances which will
yield approximations to desired insertion loss functions. Fansl4) has
indicated a method for designing reactive networks that will provide opti-
mum matching of a resistive source to an artitrary load impedence.

Unfortunately, the procedures of Cauer and Bode generally apply to
symmetrical structures and have little application to the problem at hand.
Darlington’s potential analogue method as well as his ladder network theory
seems to be best suited for treating cases where a structure having & spe-
cific frequency cheracteristic is desired., Moreover, these approachee
involve grea£ mathematical complexity and the numerical complicetions are
such as to 1imit their practicel usefulness to circumstances that warrant
the expenditure of the necessary time and effort, Another reason for
treating the problem with classical network theory is the fact that none
of the function theoretic methods sllow one to conveniently avoid the use
of mutual inductances or ideel transformers.

As previously indiceted, the point of departure between this work
and that of Norton, Dietze and 0’Donnell is founded on the idea that the
design of a lumped element impedance transforming structure might better
be formulated by treating en N mesh network as a complete unit. Previous
investigators designed their networks out of sub-units which were then
cascaded in the ways indicated., In all cases conditions are placed on

the image impedances which exiat et points interlior to the complete struc-



-6~
ture. It was felt that by considering only the overall network, without
any specification of the impedance conditions existing at interior points
of the network, these unnecessary constraints could be avoided thereby
yielding an improved design.

The method to be followed consists simply of applying the deter-
minental condition that is necessary and sufficient for impedence trans-
formation to networks having three, four end five meshes respectively.
Then, within this framework, & set of relationships between element values
which assures single band pass operation is ottained. In all instances
vhere an arbitrary specification of some of the components is possible the
choice is made on the tesis of simplicity and economy of elements., The
parameter of mein interest is the bandwidth ratio defined as the ratio of
upper and lower cutoff frequencies, and the expression for this parameter
is derived for each of the networks considered,

Section I includes the derivation of the tesic determinental equa-
tions on which the thesis is tased,end the conditions to insure impedance
transformation are also indicated.

In Section II, III and IV these conditions are applied to three, four
and five mesh networks respectively. In eech cese, conditions for single
band pass operation are developed, and the bandwidth ratio versus trans-
formation ratio characteristic is obtained, A comparison of these results
with those of 0'Donnell’s 1s also included.

In Section V the shape of the input imege impedance curve for fre-
quencies in the pass band is calculated, and dimensionless plots are given
for representative value of S ,

The value of matching source resistsace that gives the optimum volt-

age transfer cheracteristic is determined in Section VI along with repre-



-
sentative plots of the voltage transfer characteristic for three networks
of the three mesh type. These networks though designed for the same im=-
pedance trensformation ratio differ in form and display different band-
width ratios.

Section VII contains a sample calculation of component values for
the three three mesh networks in Section VI along with an experimental

verification of the theory.

Section VIII includes a discussion of certain aspects not considered

in the thesis proper and some suggestions for further study.
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Section I

DERIVATION OF DETERMINENTAL CONDITIONS FOR IMPEDANCE TRANSFORMATICN

The following derivations may be found in reference (15). They eare
included here for completeness and easy reference.
Consider a linear, passive, bllateral. four-terminal, n-mesh network

like that shown below.

+ [ —]  _+
_— n mesh -
n
Eqn I1 . Eo
network
l—e o-—

Using Kirchhoff ‘s voltage law and writing the mesh equations we have

Ein=21 11 ‘):lIz'j::Is .coooon.o.oooo'o.olo.o-;IlIn
O =.leIl +zz Iz -)3113 20 o000 00O COIOSNOEIOTRPIROONCLEOEDDS -;)lIn
o =-),,Il -JI)IZ ootoocooooo.oonotOoso-to.cto..-}ltIn

[ G Qe O P PP 00000 OERPRINO000B 000000008 00CRRECESSIPSIOOIIOSETOTIOITPVPTDS

Eo =.)n111 -}IMIZ €980 0e0esreeserseessnssnenoO O +zn1n

Where, 2 j is the sum of all of the impedances in the jth mesh, 3 ik is the
sum of all of the impedances which are common to both the jth and kth mesh,
and Ij is the current in the jth mesh.

Solving this system of equations for I, and I, yields

n

- -1

I, =E A.u"’il) Eg 8in and I, = (-1)"""Eyp Apg - Eo &nn
A

where A 1s the determinant of the impedance elements and Ajx ie the minor
formed from A by deleting the jth column and kth row,
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Denoting the input and output image impedances by Z; X and Z1, respec-
tively, we can say that,t; definition, when the network is terminated at
the output bty '512 the impedance seen at the input is 273 . and placing 23 .
across the input terminals causes the impedance le to appear at the out-
put terminals. That is, when Eq = In 21, then Ejp = I, 27,, and when
Eyp = =I4 21, then E5 = =In 23,.
Considering the first of these statements, when

2, (=)™ Eip &n; - Eo fmn) [B1n 811 +(-1) Eq An)

then Ein = Zl
A 1 A

(]

n-1 n
Thus, 1€ Eo(1+ 2y, ‘_*.‘AE ) = (~1) 210840 B, B1n(1- 21, A1) = () 5, A

21, 21 Any A
Therefore, Eo (&% 2),0nn) = -Eo —(37 21, 8qy) o

& + M(Z)200n - Z) p11) = 21,215(8138n=Bnbny) =0
2 *
Now, because of reciprocity, Ay = Onj. Also, (A;;Min=8jn) = A& A vhere A
is found from A by deleting the first and last rows and columns. (See
*
reference 16) Hence, A + le%n- leau -21,2,4 =0 (1-1)
Applying an exactly parallel method to the requirement that if Ejp = -I;2; N
then Ey = In 21, ylelds the following equation,
»

Solving (1-1) end (1-2) simultaneously gives the equations for 2; . and 21,.

21, = /Biid and 2, = /Agnd
2 bnn A 1 B35 A

These equations now permit a statement of the determinantal conditions

that are necessary and sufficient to insure a network that will transform

Z
impedances independent of frequency. The impedance transformation is 7}2-

1
and 1f transformation independent of frequency is desired, it is only

necessary to meke certain that Aﬁé = K (a constant), K is the impedance
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trensformation ratio,

It can also easily be shown from the foregoing that any such four

terminal network can be represented as a T section like that shown below.

a 2 2 7, = 8

o

a
Sy - A
Z, by =T B
= A
s —s Zc—Tm

This representation 111l be useful in Section V to find the voltage trans-
fer function when the network is mismatched,

An alternative approach could “e used beceuse for an n-node network a
system of equations involving _nittances, similar to those for the mesh
enalysis, can be written. Similer results are obtained for the input and

output image admittences bty exactly parallel considerations. That is, Yll

end Y, are given by and — , and
1; Yy, = /Sma Yq., = Dy B ’

the requirement of admittance transformation independent of frequency amounts
again to the stipulation that %ﬁé = K, The various minors of A are the
same as previously defined except that A is now made up of the various
branch and node admittances.

In all of what follows the networks will be considered on the mesh
basis. All that cen be done on the mesh basis using impedances can be
duplicated by considering node equations involving admittences. Indeed,
there is quite a bit more flexibility evailable vhen the nodal analysis is
used because it is frequently ecsier topologically to include certein mutuel

coupling admittances, in higher order networks, than it is to achicve an

equivalent coupling impedance in a mesh structure. In order to partially



restrict the content of this thesis, however, the additional degrees of

freedom availatle through the use of a nodal analysis will not be ex-
ploited. Thur, the remainder of this thesis will be directed towards a
study of networks whose elements are regarded as impedances and whose

A
structure is such that the condition Zsf: = K 1is fulfilled.
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Section II
THE THREE MESH NETWORK

In this chapter the determinantal condition required for impedance
trensformation is applied to & three mesh network. Constraints are intro-
duced so that single-band~-pass operation is assured, and the retworks thus
evolved are analysed to determine their bandwidth ratio characteristics.
Consider the impedance determinant A for the three mesh network shown in

Figure (4).

Where,
21 ‘JII .)/3 Zl = Jl/ +}I& ﬁJ‘]
A =|-3. 22 -},3 Zo =J;z f)/z ";13
Ja -),, Z3 23 FJat Jun $gw
Zl = A11 =
The condition that Zi‘ o K  corresponds to the requirement
1

thet (2573 - 3.3) = K(2.Z2 - 3 ).
This equetion will te setisfied and e simpler geometric confilguration will
result if 3,,1s made equal to ~ET}M + Then Z3 =KZ,, which requires that

Jntdetjn =K3u +KJa + Klsor since Ju=wK Jn

3n=KJu + (K= oK) Ju + (K-1) 30

j,, will certeinly be realizatle if),, ’ j,,and ‘}‘, are realizable and if
K : 1 + (Throughout the thesis K is regarded as teing greater than or
equal to unity, If K ; 1 is desired, it is only necessary to turn a net-
work designed for K 2 1 end for end.)

Under the conditions mentioned above, the determinant A becomes

Zl'}a ')u
=| B 23 wKia end %) = ’A,m /
By A% el AN

ju 'A/k_)a K2 1



Y I Ias
7/2 }zs
[
i3
Figure 4
b
'y

b = a(1wK)- JT}./K.

0 = >
a =K )
(1wK)
Figure §
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This thesis is primarily concerned with structures displaying single

band pass operation., Since a pass bend occurs when 23 , 18 real, it is
desirable to minimize the number of poles or zeros of Zj,. This implies
that, since A and & are both ultimately rational functions of frequency,
it would be desiratle to enforce the condition that & be contained s a
factor of A . Furthermore, this consideration sugrests that aside from
economicel considerations it would be wise to make the impedance elements
in the network correspond to simple configuretions, For example, it would
be imprudent to make Ja or },, represent a parallel resonant circuit,

Now, A = K22 2y = 2/KJnls- 2 3 = 2KZyja

x

2 2 .
A=KZZ(ZI-;{\‘-)-2K2,;(ZI+%(—’.’.), and A =12, .

Thus, 1 /K 2y (25 -F) - 2Kga (2, + )
le S =)

~vK 22
2 . \2 e
ne=n /(3B - IEEE] e

In order that A" be a factor of A in this cese requires only that

LH + l_ﬁ— = @ Zp (vhere @ is a real constant) or that
~K

AR FIE S +% =¢ (Ja2 + gn +p}u).

Since ),,: df)n , this in turn tecomes J,, +;,* +(1+___l___ )),J = g}‘ﬁg(lh f’j;,‘
~K

Keeping the series impedances in the first two meshes of the seme kind, ie

A= oy“, and expressing),, as ’},, = a f.. + bJ,; we have

u.["‘ + (l + '_]"" ) J"" (1+b+ —E‘- ) n= at (1‘*&1-{—) 12
) : ~vK ~K / ¢j ¢ }

Agsuming that (J-&) is a function of frequency, which is of course the only
A
case of interest, this condition will be satisfied if and only if

[c+a(l + 1) ] =9 and (1 +b + -_?_')=()(1+~1?)-
~K v K
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Equation (2-1) becomes,upon substituting the values of Zy, and Jiss

2
le =}u/(“5f+l+l§":+b) ’%(‘:"":'*b)z" 2¢ or

2, =juy Lw)- 00T+ 210 (are)- L1 Bl (2-2)

In order to determine the frequencies that the network passes it is only
necessary to determine the regions where 211 is real. In the networks to
be considered,these regions will lie between adjacent zeros of the real
function ofeﬁ] given under the radical sign in equation (2-2), Zeros occur

when

AL (e )- 812 AL (15) (s409- 2T -4f (atef & gL (1v)-

il

Nlo‘m

s 2 [a + =% &)
[ (a4=) (140)- 53] ¥ fhgl(ate)’- @‘f‘("ﬂﬂi"l felatet RaZsof- 2¢%
P2 -

[(a + =) - J
or finally when

51“ -[(1+b)(a+o=)- /2¢t(a+a) - Ka2] + K[a(1+b) (a+a)b]
: (s + 0> 82

In the case where ;,4 represents a capacitor and ’}urepresents an

inductor,i.e.,where ),,, = 3%5 and J.n.= juLy,the zeros of Zl occur when
(o}

Jas = JoLy 2 "2=-[(1+b)(a+a)--K]f;é (a+a)- ] + k[a(l-rb) (a+c<)b:l2

—' - o=
- - - -

o L% [(ate)?= 2

1
where «, = VLoCo + If upper cutoff frequency = f, and lower cutoff freq-
uency = f;,the bandwidth ratio /& is defined as -2- and is given by

£

2

=(1'2 _ [(14) (ate)= f—i]_af )égt(ua)- £J+ %[a(l+b)-(a+a)b]2

Tl ~ ab 2 2 —
[(14b) (ate)= =] = ,é;f[(a«x)- % 1+ %[a(1+b).(a+«)b]2
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It will be more convenient in the work that follows to express 3 as

o d

2t (a+)?- §2] + i[a(l-l-b)—(ﬁ«)b]z
[(1+b) (ate)- ST

vhere M is given by M= (2-4)

Thus,a network has been arrived at that has an impedance transfor-
mation ratio K and a bandwidth ratio 44 provided the impedance elements

are related as follows,

.;—./K;u Jv=&ja
i = 8Jutddu Jis= Kju +(KvK) 3 +(K-1)3.5
and the constants «,a,b and ¢ satisfy the two equations
« + a(l +./%) =g (2-5)
(1+d +,/§ ) =g +vK) (2-6)
It can be seen that,by using the two equations above,both § and «
can be eliminated from the expression for M thereby meking M a function
of the two variable constants a and b. The values of a and b can be arbi-
trarily selected subject to the limitation that « 2 0, a 20 and b 2 0.
The function M can now be analysed to determine whether there exists an
admissible choice of a and b that will yleld an optimum bandwidth ratio
for each value of K,

Substituting into (2-4) the value of (x +a)=¢ - % M becomes

2
Y < 29l (g- mﬁ)- -§2 1+4 a(1+b)-b(a+«)f
[(1+b)(¢- g -2
: q-
which may in turn be written as M =1 L@as)-2g- H( a;]zi- (2-8)
[(1+b) (¢ - B)-
But¢=~/§+i-&imdtm i

2
(1+b)2 -2 - % = -(—-u-b +2(1- K)b+1- -—ﬁ- ﬂ(—u{b s2b K TwE * —L—zl

(2+7)
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»

2 -
2 - 2
or (140)°- 29 - B = Kb b+ EH%
Also, [(140)(g- Jﬁ)- -‘-%] = (1+b)g - ‘/%(1+b+ ﬁ) = (140)¢ './ﬁf‘(l"‘/x)

Hence,substituting these results into (2-8) and noting that ¢ = 1s(b+ .ﬁ_)

VKT Tk
2
iy Ol p) e b ggl
d(b+ 20500 [140-a (K2K) [1+b-a(1}1%‘5)]2

2 .2 , (bt LK) (b2g+ 2K
Now (¢-ﬁ)-§=¢2-2¢‘/§=¢(¢.5—% = iﬁx st 3%

- i .
s that M = 1-2)(bt 1) (b-2at ¥{7) =1 . (E=L)by(b-2a) (2-9)

K [1-a P Kb+ b= s (RE)
where by = b +i¥-§i .

Now that M has been obtained as a function of a and b (or b,) only,
the conditions previously mentioned( « 20, a Z 0,and b 20 )can be
studied in order to see how a and b may vary. These constraints are
necessary if all of the impedance elements are to be realizsble., Certain-
ly the admissible values of a and b must lie only in the first quadrant
1wk and g = 2 +.1__ it

~K ~K 1wk

of the a, b plane, Now since « =0 - a

>
is necessary, for « = 0, that

b 2,10k -_L o that b2 a(1nk) - 2K

VK K 1K 1wk

Hv

Thus, the region of admissible values of a and b corresponds to the shaded
domain shown in Figure (5).

It 18 of interest to establish whether or not there are any allowed
values of e and b which, for any given K, make M and therefored a maximum,
This can be done by finding out whether or not there are any interior

points of the domain at which %—:4- = 0 and -E-% = 0, Such points may repre-



sent values of a and b at which/ 151 9&1 maximum, If there are no such
points then the maximum M that can be achieved corresponds to some point
lying on the boundary., Using equation (2-9) for M and setting-:—% =-:-%-; =0
yields the following equation

2(b1-a)[b1+1bx "ﬂ(%%ﬂ )J = 2b1(b1-2a)

2 - 2
by - bja +—d (by-a) - &lby-a WK) = b, - 2ab,
1K v

-_ 2
[1- a(l+K) ]
or -
b1(—L.— --2) = l(—l—_- - E.Q.-_ili ). Hence, by = a ”J-K-g—
1wk #K 1K K [1- a(iK))
vK

Setting il—: = 0 ylelds the equation

F
“2(b; + l .= & liv_?..) = 2(by=2a)(= ..l.iw_.f_)
1K ~X ~K

Solving this for a yields

= b - k- = 1 - k.
a =23 e —d (b~ &R
(1K) 1wk 1wk

If the two conditions, ¥ =0 and 3 M =0, are to hold similtaneously,
28 -5-b'1

- -2
it is necessary that 3. g_(;%_w_lg)] = a [1- g_(_].j%m_] or that, substi-
Y L2

tuting for a,

by(l- By +l ) = L (b 2K ) [1- LK b, +1]
vK 1wk 1wk lwK ~K
Solving this for b; leads to the expression by = 2By, -2 _.L..:..,Z
wK (1K)

[

with the result that b, = =2 «K ==K .
(vK=-1) (vK+1)  (K-1)

mey v e Kevys b m ve- Kgeg)onk
14K (K=1) 1K vK=1 vK=1

It is apparent that for K>l there is no d® .3. 0 such that %‘E and.}li are
a
simultaneously zero. Consequently, there are no interior pointe (a,b)

where £ is a maximum, Attention will therefore be directed to a study
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of the cases vhere a and b lie on a segment of the boundary line. These
boundary cases correspond physically to networks having one or two less
elements than the general three mesh network and are therefore simpler
and more economical structures.
The first of the boundary cases to be considered corresponds to
meking « = 0, From equation (2-6), b =vK @ - -'Z-- and from equation(2-5)

x WK
g= %5- a. Hence, b = (1wK)a - ]’%ﬁ . Also, as shown in Figure (5)

o 2 & 2« Sinceb; =D + i’_ﬁ- s by = (1+/K)a § and substituting
(1w/K)
this into equation (2-9) for M ylelds
(14/K)e a(/K-1) 2 e
. K=1 K)a _a(vK-1 - (K-1)
K K) (vK- K ;
(E25F 1wa Crv i ,;7{3‘352

It 18 clear that M will be a maximum when & takes on the smallest
permissable valuejthat is, when a = _»ZK. or vhen b = 0, Under these

(1wK)?
conditions M is given by
2 ) 2(2-10)
- K (K-1) - (k-1)" . (vE=1) _ 2vK-1
M=1-=- =] = = le =
K QwBrdd) , 4 Lf K (WE4) K K
(1wK)  1WK

From the equation given above for M it can be seen that,by allowing

a to take on larger and larger values, M can be made to teke on as small

a value as desired, This means that, by varying a between a = —-ﬂ-(:z
(1wK)
and 8 =® , 3 may be varied between unity and the value corresponding

to M as given by equation (2-10),
The next boundary case of interest is when b = 0, Equations (2=-5)

- - - M - —-i——
and (2-6) showthatinthiscase«--# o 8 oy g = A,

Figure (5) shows that a must satisfy O Saf -L— o « The reduced expres-
(1K)
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sion for M is most conveniently found by using equation(2-4) because when

b =0 it reduces to M = 2¢ + (1-2¢) . Since § = =k, M becomes
K (ate 1wK

M= 2 + a2 %Kﬂ It can easily be seen that maximum M occurs
TIWE T (e’ VERL y

when « = 0 or vhen a = _-’iLKf-? » in vhich case M assumes the same value
(1wk)

as in the previous instance where « =0 and b = 0 (as it must).The equiv-
alence of both expressions can be realized by noting that Q’.K_;;l is

identically equal to iﬁk- + KL(}/(I:(%T) o In addition,by varying & between

the limits given above the value of M may be made to vary from M = 'ﬁ%’i
to M= -—g— + K- .
1wK  K(1wK)
The final boundary case is when a = O, Then b 20 and g= af& +ﬁ}f
2
Equation (2-9), with a = 0 ,gives the result M = 1l- {K=1) by or
k(o g

M=1- K—;;l —---J'—-—-—z o Maximum M obviously occurs when b; takes on
[+ 1375,

its smallest value. The smallest value b, can have is b; = K yhich

1wK
corresponds to b = 0, Then -
M=1o—El o D o2 s
K(14 ) wka)® ¥

checks with the previous result obtained for b =0 and a =0, For b >0
M will assume all values between M = l% and M = i;zf(' because the limit
of M as b approaches infinity is M =1 - K—;-]-' = ]l( .

The conditions and results of the various cases considered are sur-

marized below,

Case #1 «=0, b=a(lwk)- 'i%(i' , end a2 _il_(_:_z
(1K)

M=1- __‘(K"l)z a2

K [(K~1) vﬁ +

e i



Case #2 b=0, «= ﬁl_( -a(%—l), end 0 S a é(..'ﬂ"_..z

> b
= = d = S - 4
Case #3 a=0, b=0, andx=¢ X I%K

[b +2b+ ]

(14b)

The circuits corresponding to the separate cases summarized above
are shown in Figures (6),(7), and (8). The bandwidth ratio characteristics
of the various circuits may be summarized by saying that the circuit for
case# 1 will,for any K,permit a bandwidth ratio between unity and the max-
imum value that can be achieved using one of the three mesh networks con-
sidered, This maximum value is found by using the M given in equation
(2-10). If the desired 8 is such that i'f'i Sy s ?Llf(:l , the circuit for
case#2 may be usedjwhereas if % <M= Iﬁ'ﬁ is necessary,the circuit for
case#3 may be used,

In general,circuits corresponding to case# 2 or case#3 should be
used wherever possible because these circuits have higher order zeros at

w = 00 and the voper frequency cutoff characteristics will therefore be

sharper than for the circuits of case #1

The graph shown in Figure (9) portrays the regions of realizable 4
and K along with three boundary curves., The curve labelled "Curve I" rep-
resents the maximum values of 4 that can be obtained using a three mesh
network of the type considered. Curve II displays the values of/6 at which

the transition from a case#2 network to & case #3 network takes place.

Curve IIT shows the lower 1limit of values of £ that are obtainable with
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Plot of Values of [ Realizable With a Three Mesh Network
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networks considered in case # 3,Also shown in Figure(9) are the bandwidth

ratio characteristics that may be obtained using the designs of O'Donnell,
The dashed curve corresponds to the so-called "Exponential Taper" filter
while the curve showing the bandwidth ratio characteristic of the "Tsche-
byscheff Taper" filter is coincident with Curve 1I,

This identity withk Curve II can be shown by teking O’Donnell’s ex-
pression for G as a function of K for an equivalent Tschebyscheff filter
and reducing it to the terms of this thesis. For a Tschebyscheff tapered
filter of three meshes(two sections) the impedance transformation ratio
is given by the equatioér K= [Tz(x)]2 wvhere Tb(x) is a second order
Tschebyecheff polynomisl and is equal to T,(x) =(2x?-1). Thus,
vk = Ty(x) = (2x2—1). x is a parameter used by 0 Donnell and is equal to

2
w,
+1 2 2.2
x=(?:) = £2't_1 aothata/f('=2-(£-zﬂ)2-1-
2. A (8 -1)
1
Now ]/li_z»_/l(_ = 232-{-% and solving for &2 yields
e

]

i

o o Lr

This expression is identically equel to the expression used to plot the
transition curve(Curve II) shown in Figure(9). It can also be shown that
these identical curves represent the characteristics of circuits that are
identical. Thus,the Tschebyscheff filter networks may be regarded as a

special case of the more general three mesh networks herein considered.

It should perhaps be noted that the improvement in the maximum

X See page 31 of reference (9a)
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value of S,represented by Curve I, is not obtained at the expense of ad-

ditional impedance elements since the circuit involved has the same num-
ber of elements as the Tschebyscheff tapered filter, In addition to the
realization of larger bandwidth ratios,the three mesh networks studied
provide a much greater degree of flexibility in as much as,for any value
of K, a range of values of S may be obtained, This is in contrast to the
strict one to one relationship between Sand K displayed py the exponen-
tial taper and Tschebyscheff taper networks. This feature seem.: to be
rather important since it is quite conceiveble that in many instances ex
impedance transforming network designed to operate between fixed imped-
ance levels with a specified bandwidth ratio would be useful. In this
case the theory presented here would permit the design of a structure
that combines both functions of impedance transformation and filtering
while the exponential or Tschebyscheff tapered networks would, in most
cases, require the cascading of a symmetrical filter to obtain the de-
sired bandwidth ratio.
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Section III

THE FOUR MESH NETWORK
In this section the same general methods used in Section II will be
applied to the synthesis of a four mesh structure having the form indi-
cated in Figure (10). In this case,

2, -},‘ 0 -J/y 2, =}// +}IJ. +)I'/

32 2, -}as O 2,0 = + 30 +)‘\-‘
A= / 2 9 where 2 = J

0 'Ju 23 -Jsy 23 =}:; +J;J +)J-¢

P L Z, 24 = Jyy ¥ Jw * Jay

pA
1
As before,if z-—-lz- is to be made equal to & constant K,it is neces-
1

sary and sufficient that %iﬁ = K. This is equivalent to requiring that
22232, - Z,ﬁ}x,, - 22‘},‘,= K [2,2,23 - Z3j,: - Z;};] (3-1)
The impedances j3,,, ) 23 yand j,, will @11 be regarded as being of the same
type. In other words,)u may be expressed as (g )u.) and ‘jwmy be written
as (31),,,) where g and g, are real positive constants,

2

(3-1) will be satisfied if 2,= K Z; end if 2,= §2 2,.This implies

3
that

B APIY iy = K(Gu +ju thw) or = ya +(K"81)/u +(K-1)),y  (3-2)

and that 2 2 2
JJJ + 1) +)J4/ = Eﬁ(ju +;/1 +};:) or j"' +(8+81y/z = 1%1)“ + ﬁ-"(l+g2ju.

2 2
Thus, j:; = Eﬂ}n. + [g-l%(l-l'g) - (g + g,_)])n_ (3-3)

In order to reduce complexity and to keep the series impedance elements
es much alike as possible the coefficient of },,_ in (3-3) will be made

equal to zero., Hence, 2
B14g) = (g + ) . (3-4)

From (3-2), Jw will certainly be reslizable as long as K 2 €1 .



Figure 10
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Once again, Zy = /ﬁl-é -1 . &'and A are found by ex-

813 A" A
panding the apprepriate determinants with the result that A'= 224 = Vs
and &= (K23 =)u) & = 232 g s (Ba2ym joy) = 2,JujmjsrJry oSubstituting
in the values of 23,34,};,, and;,y in terms of Z,,Z,,and j. gives the
tollowing
*(xzx }N)A - 81217-2)/& - 1‘f zz)n + 81)/4 - 2881)w;u
A= (K zx ")n/ )&’ 263 z@g}n - 288;)/4}/& + 81)1; .

: (2242, + 2 iy = §sa
Now, -A.. (KZ; -Jrv ) - sz)n ( 12 )J ; )
Y (2223 -3is)

2.2, + Edu)y. A
Finally, .A. K)a [() :%f.) ( 1 + ey lﬁ‘) 1. (3-5)
2 x 22
(zz - "g)u.)
g1
If A 1s to be a factor of A, it is only necessary to make
& 2 .
i+ g S0 L)
g1
Z.%2 , g
;’*}"-+81>ll‘l’- dt( ) Kg ]

If we again let jﬂ T );; and ),y= a)n+ an. » the last equation becomes

c<a+~w}~‘- + (1+0) ] [J»- + 14g] + 5—(»‘*— ) - =¢W& H4g)- 55 ]

23

or (aw)H + L) +(14g) (avet - 0] iz 4 [ aam) (2eg) Bb- 4] -

;n.
2
¢(§"-§ + 2¢(1+g) L 4T (14g)°- :E ]
1
Matching coefficients of :}f yields the following equalities
(a t+) =g (3-6)

(14b) 4 (14g) (a4e) + 5 e =2¢(14g) or 1+ b+ gx‘ = @(1+g) (3=17)
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2 2
(14b) (14g) + £ b - % = g(14e) - LI or, eubstituting for (1+b) 1ts
€1
value in (3-7),

& [(14g)a-b] +% =g K 5:; (3-8)

Under these conditions J;; = K J,:_ § 5—1 - 16“) - 2¢] and

=-3 =
“, 7K _27 e )[(«:}*:h Hta 42 )2~ % (a w)l-2g .

This,it will be noted,is exactly the same form as the expression obtalned
for the 211 of a three mesh network as given in the equation immediately
preceding (2-2). If,as was done in the three mesh networks, Jiz 1s made
an inductance equal to L, and ‘},,, is made a capacitance equal to C,, the
equation for the bandwidth ratio will be identical to that obtained in

the three mesh case. That is, from equations (2-3) and (2-4),

2_ az - 2
At e < FLETF T4 faa) g(a«xn (3-9)
l-wM [(1+b)(a+°<) - —

The quantities ¢,x,a,and b are now,of course,subject to different
constraints. There are algo,as previously indicated,conditions on g end
g1} namely, g, 2K and 5*(1+g) = (g+tgy). This latter equation can be
solved for g, in terms of g and K and yields

<
The condition g; = K can now be examined to determine the requirements,

if any,on g. If g, =3 K, then 1+g)7 <

1+ iﬂ%—fﬂ) g 2g+l , Squaring each side, 1 + 451‘(-'23) 21+ Lg + 482

or % 21 which 1s satisfied for a1l K 2 1,
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It is again possible in principal to®express M in terms of any two
of the veriatles «, a, b, g, g, and ¢ since there are four addi tional
equations interrelating these variables., It would then be theoretically
possible to determine the values of the selected coordinates at which M
is a maximum by the same method used in analysing the three mesh struc-
ture., The range of values over which the selected coordinates can vary
constitute a region that can be determined by the condition that g, a,

b and « all be greater than zero, It could then be determined what if
any points of meximum M occur within the admissible region., These points,
or if there are none, the boundary of the region would then serve as a
guide to the design of a four mesh structure with optimum bandwidth ratio,

Unfortunately, equations (3-6), (3=7), and (3-8) are of such &
nature that, when substituted into the expression for M, the two simul-
teneous equations obtained by making the partial derivatives of M equal
to zero are extremely intractable, For example, if M is reduced to a
function of b and g, only, the two simultaneous equations are cubics in
b with coefficients that are complicated non=linear functions of gji.

Any general algebraic solution of these equations eppears quite impracti=
cal.

For this reason, sttention will be confined to a survey of the
boundary casesj ia,where one or more of the varisbles &, b and « are zero,
This corresponds to networks having one or two less elements than the
general case,

Before considering the separate cases it will be convenient for
vhat follows to reduce the general expression for M to a different form,
Applying equation (3-6) to the expression for M labelled (3-9) we obtain
the following results:
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2 292 2 tf ‘a? 2
y = 2¢(¢2‘ gz)+ h(lﬂ))-p‘b]z= 14 2¢(¢2- ﬂ +(1+bi.¢?(1+:) +§. - Tﬁh
[avo)g- T [ - 8]

2 2 2
- B’z - Bl

or M=1 7
) - 223

(3-10)

Using the general constraining equations marked (3-7) and (3-8) it is

2
possible to find a more convenient form for [(1+b)2-2¢- % ]. The algelbraic
manipulation involved is considerable and is therefore included in Appen-

dix I. The result is that 2 2 _
[(1+b) =2¢- % 1= Eil (b + %:54)2. Since

this 1s a completely general result it may be substituted into (3-10)
K-g4.2 2
thereby yielding gy R R 8
M=1e« .-lK

(3=-11)
b2
[(1+d)g - —-‘KJ

Because of the irrational nature of the equation giving g, as & function

of g and K it will be better to express g as a function of g; which, by

solving (3-4), turns out to be g = gll:%'g;l For g 20 it 1s necessary
- g1~
that oK S g, K,

Consider now the case when a =0, « 20, and b 2o, Equation(3-11)

K1 &+ R
M=1- 5 > « The equation for b as a function
(1+b)

2 2
of g, is also derived in Appendix I and is b = fo)-zﬂ(-gﬂ— ] .
2 (K-g;) (k-1)

reduces to

From this,
(b SRy = Ay (el (ErK) = 200g)) | o g (@D (@R

2 (K-g,) 2(K-1) (K-g,)

(1) = L&) (g3-K)-2(k-g )% +1 = (g5~1) (g3-K)=2[K=g )= (K-1) (K~ )
2 (K-1) (K-g,) 2 (K-1) (K-g,)
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(g-1)eé- K + 2(k-g) ]
2(K-1) (K=gy)
the equation for M gives
2 2

M=1-Xdp_g8-K% oy Kl 1 F g

. g2-K+2 (K-g ,) K™ 94 'i'(']z{:'g';l

g1-K

In order to maximize M i%{ is necessary to make the quantity in

or (14) = « Substituting these results into

brackets as small as possible. This will heo achieved if g, is allowed

to assume its lowest value. The range of values over which g, may vary
can be determined by noting that b, «, and g must all be positive if the
networks are to te realizable, It was shown earlier that if g 2 0 then
JK £ €1 s K. Using the equation above for b as a function of g; and K

it can be seen that for b 2 0 (gl—l)(gi-x) 2 2(K-g1)2. Expending this
we obtain the requirement that g31 - 3g§ + 3Kgy; + K - 2K2 2 0, Thus, €3
must be such that g, 2 gy where g} satisfies the above expression when
the equelity sign is used. To determine for what values of g; « Zo
consider that when a = 0, « = ¢, Appendix I includes an equation for ¢

in terms of b and gy; thet is, ¢ = Bgb 4 K 2';):}5 il;-g )] . Since it

1s already required that 1 <vK = g, =K, all terms are positive and

« = ¢ can never be negative. Thus, the only restrictions on g; are

g ; s g1 <K. ( g1 is never allowed to actually take on the value K and
K is always considered greater than unity , except in limiting cases,
because division by (K-g;) and (K-1) occurs frequently).The allowed val-
ues of g,, when a = 0, constitute the region shown in Figure (14) that
is bounded by the straight line g; = K and the curve g3 = g3. The curve
is obtained by solving numerically the defining equation of g; given

above.

Because of the freedom in the choice of g;, M, and therefore G,



may vary continuously between a minimum and a maximum, The maximum value

of M can be found by inserting the appropriate value of g, = g{ into equa-
tion (3-12). The minimum velue of M can be found by allowing gy to ap-
proach K in equation (3-12) and noting that the result is M = % . Plote
of A versus g, for representative values of K are shown in Figure (15).
The next cese of interest is vhen b =0, « 20, and a 2 0. Under
these circumstances the general expression for M given in equation (3=11)

reduces to Equations (3-7) and (3-8),

2 2
2 - 2
w=1. g (@ g_.).
K(K=1) ¢
under the condition that b = 0, can be used to determine «, a, ¢ and

.

2
(92- % ) as functions of g, alone. This is done in Appendix II with the

following results,
g = 2K g, - g5 - K
2 K (K-1)

[_-_gi+ Sgi- Kgq - K + 2K2]
2 (K=1) (K-g4)

L gi(lﬂ,{) - 6Kgi +45K2+K) g1 - 2K3 ]
2 (K=1) (K-g3)

R
|

o &y - LUK ) ()’ ]
K K (k1) (K-gy)”

Substituting into the expression given above for M the equations for ¢2

2 2
and (9 - %)
o1 Eogd  ERmEeg)-G0’) )’
K(K=1) 4K° (K-1) (K-g,) [2Kg g =K1’
2
Me1e (GK) [ (Kag )= (pomk) ] (3-13)
K

[K(%~1)(K-g;)% 1°

The expression for a shows that for a 20 g1 must be such that g, 2 e;
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where g{ is the same as previously defined. Referring to the equation

for « makes it apparent that, if « is to be greater than or equel to zero,

it is necessary that g; obey the condition gy 4 gy where g7 is defined

as (1K) g:3 - 6Kg:2+ (5K2+K) g: - 2K3= 0. Thus, the admissible values
of g4, for the case where b =0, form a region in the (K,g;) plane which
is bounded above by the curve g; = g; and bounded telow by the curve
g1 =81 » This region is also shown on Figure(14). Equation (3-13) is
not an obvious monotonic function of g, as was the expression for M in
the case where a = 0, However, for selected values of K, the variation
inBas gy goes from g, = gi to g4 = g;' can be easily plotted, This is
done on Figure (15), and it cen be seen that only for larger values of K
does /6 monotonically increase with increasing gj.

Finally, there is to be considered the case when « =0, a ; 0, and

b2 0. If « =0, then a = ¢ and the general expression for M, equation

(3-11), reduces to

K= 2 5 K-1 K-gq .2
NIRRT S O Ll il slPE Ul = w
2 b K 2

s [1+b-2 7P b+ )

Using equations (3=7) and (3-8) with ¢ = 0 allows one to find b and a
as functions of gj. Thisis carried out in Appendix III with the consequence
2
that - _(El.x) 2
2(K-1) (K-g4)

[2(K~g1)+(g2K)]

and . [g;(k-1) (éi?K)' 2(K£E1)3] . Also included in Appendix IJI
2(K-1) (K-g;)

K
is a calculation of the quantity C (b + =t ) j in terms of g, and K
(b+ KK“'T)
alone. That is, K
(b + 22845)
Srous et L
b+ ) 2(K=

(R-1) (g3-K)



Hence, M =1 = 1 . ; (3-14)
[ 1+ 2(K= ]
(k=1) (g 1=K)

From the equation given above for a it can be seen that the condition
a 2 0 does not impose any additional restriction on g, since g; is always
required to be such that »K = g, S K, and therefore all terms are positive.
The condition b 2 O however requires that g,(K-1) (821"1() 2 2(1(-31)3. By
expanding these terms this condition becomes
(14K)g3 - 6Kg2 + (5K%+ K)gy - 2K°2 0

vhich is equivalent to stipulating that g, 2 g3 . g; 18 the solution
of the above expression when the equality sign prevails, Thus, the lim-
itations on g; stated sbove may be interpreted to mean that when « =0 g,
must 1ie in & region of the (K, g;) plane bounded below by the curve
€1 = g: and ebove by straight line g; =K,

Expressions for the bandwidth ratio of the four mesh networks con-
sidered have been obtained in each of the separate cases by determining
M as a function of g, and K where M and Q@ are related by the equation

B = 1 +yM g1 1is an independent variable subject only to the

1-uM
requirement that it be between certain limits, and it is this freedom in

the selection of g, which 1s responsible for the flexibility that these
circuits possess,

The regions of edmissible values of g; for each of the three cases
are shown on Figure (14) and are delineated by plots of the defining equa-
tions for gi and g:. The derived equations for M were used to illustrate
on Figure (15) the bandwidth ratio es a function of g; for representative
values of K. Each of the curves on Figure (15) consist of three segments
each of which corresponds to one of the three cases a = 0, b =0, and

«=0,



The networks associated with each of the three cases are shown

schematically in Figures (11), (12) and (13), along with the equations
for the component values,

The considerable amount of algebraic manipulation required to find
the various reduced expressions for M as a function of g; and K alone was
checked in the following manner., Arbitrary admissitle values of K and r;
were used to compute «, a, ¢, and b, These were then substituted in the
original general expression for M. The resulting velue was then compared
to the value obtained by using the appropriate reduced expression involving
K and g4 only. In addition, it can be seen from Figure (15) that the re-
duced expressions checked with each other at the end points of the allowed
intervel of g;. In other words, the curves are all continuous at g,y = g;
and g4 = 8:-

Figure (16) displays the renge values that /3 may assume for any
given K using one of the four mesh structures herein considered. 0'Donne11’s
curves of 8 versus K are also included so that comparison can easily be
made, Curve I is the plot of & as a function of K when a = 0 and b = 0.
Curve II is the lowest value of /3 obtainable with a network having b = 0.
This latter curve is only equivalent to the case b = 0 and « = 0 for lergcr

values of K as can be seen from Figure (15). Curve III is the plot of

B =/.K+1 which 1s the lowest attainable value of f when & =0,
‘“
vK -1

Figure (16) may be interpreted in the following manner, Values of A tc-
tween Curves I and III may be realized ty making a = O, Values of Q3 be-
tween Curves I and II may be realized by making b = 0, and values of /3

between Curve II and @ = 1 can ke achieved by using the case where « = 0,
The dashed line corresponds to the A versus K relationship displaycd by

0’Donnell’s exponential taper network having four meshe: und shows that



-38-

2

o L ﬁ"Lo (Ket(K=1)a IL

S A P P
T T¢ Ta ©=
3w,
3:.--511’-‘251)— .__,L-gi+3gi- 3Kg1-K+2KZJ
(g2 - ¥) 2 (K1) (K=g,)
8; s &1 S g1 « = Ulﬂ()g}exgiﬂsxzm)grzxs]
2 (K-1) (K-gy)
Figure 12
g
L, K Lo (K-1)aL,
1

T L e

—[ ° T g T €1 (K‘l)b"'(x’gl)

K

e PT .

_ 81(k-gy) | (O0e)t 6 - K]

(821‘K) 2 (K-'s;)2 (k-1)

"< [81(“‘1)(821'1() -Z(K-ex)al

€1 381 <X b=

2 (K-gy)? (K-1)
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higher values of /# may be achieved by using this network when values of
K less than K = 1} are used. It should be mentioned, however, that the
exponential taper network uses one more element than the network which
corresponds to Curve I, The 4 characteristic of the Tschebyscheff taper
network is, as it was in the three mesh case, identical to the character-
istic for the case when a =0 and b = 0 which is shown in Figure (16) es
Curve I, One can thus conclude that from the standpoint of maximum band=-
width ratio the four mesh structures derived in this section are an im-
provement over the networks of 0’ Donnell only for lerger values of K.
However, as in the three mesh case the four mesh networks possess a flex~
ibility that 0 ‘Donnells structures do not have. That is, any value of

A between unity and the maximum value as given by Curve I is realizable
by using either one or another of the three cases considered in this sec-

tion, The practical utility of this feature was discussed in Section II.
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Plot of Bandwidth Ratio Versus g, for Selected Values of K
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Section 1V
THE FIVE MESH NETWORK

In this section methods similar to those used in Sections II and

III will be employed to obtain expressions for the bandwidth ratio and

component values of the five mesh structure shown in Figure (17).

For the network shown the impedance determinant A is equal to

2z 0 0 Jir
The minors A;; and A, are equal
dre By Ju 0 0
to * 2 2
A = 0 3. 25 v O Byg =25 A= Jus(ZaZy = Ja3)
c o 2, -3y * 2
o 5y P By =23 8= Ju (Z3Zy = Jov)
n 4
9/4’ O 0 ’ai./,r Zs

)

Therefore, the condition that Z:: = K requires that

Zg A © - g (2a2y = jur )]

Following the method used in the previous cases, the impedance elements

";:./,r (2223 }).)) =K [21

S A3 andjq,will be made the same kind of en impedance &s 3., . Hence

we can write J.; = gj,g s Jw= g1 3. » and jw= gzju where g, g1

and g, are real positive constants. Thus,
=K 2, +JA 23 (2282'KZA)+,}/* (Kgl-g 82)

s =

x
A
gz
In order to keep 25 as simple as possible the conditions 2 n = -]2(- Z2

and Kgi = gz g‘z will ge enforced, With this stipulation Z5 =X Z;, The
condition that 24 -ﬁ 2, implies that

(Jov + Jor +J4) = 1%(‘;‘; +;,, + g )
g2

Substituting for ;n »Ja » and jus and noting that ﬁé this equation

becones ‘}‘/y+ (gy + KZ)J" or

Eé[ St () g ]



2
K)+2
a= m.zm:v_u_ 3u

2g (14g)° (1wE)

Figure 17
0 i = 8
g = K
Y-
Figure 18
2
« Lo Lo PL 'é Lo Ke L, |
Ll T 113) cﬂvﬁ-I-ac'm\ T cm Ir
Tc° F-2 T 2 T A [(K-gp)+(k=1)b)
Lo
T )
° ~0
< f1ryK (g+~K)
0 <g =y 818 (14g) '/i(f;f;;
b___.éz_g:-w—.i—:—ziz) .“:m P=282¢
JE41 28 (14g) 14
2
M=l - (1+ #K)© (X=1)

Fipure 19 [ WK+2g) (1*/1?)+282 ]2
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2
In= :;J«u +[ ?(1*’8) - (81* g,) 1 3 (4-1)

In order to make all of the interior series impedance elements similay

we will let Eg(:ug) = (81* &,). Since g, = vk 5-1 this becomes

: +vK
gﬂ(lm) =1 +‘§5 or €1=¢ ﬁ) (4-2)

and,of course, g, =vK %1 =vK -E—f-—-::—‘;—})() (4-3)

The requirement that Z5 =K 2, means that (;a tiw +3: ) 18
equal to K(J,, +Jn + s ) or that I = KJ,, +(K-g2)o7u. +(K-1)J«r (4=4)
Since),, ,),; s and Jw 8re assumed realizable and K 2 1, J“ will certainly
be realizable if g, 2 K. This will be true if (gwX) = K (14g),and there-
fore it is always true because K is always greater than or equal to unity.
Hence, }ss 18 realizable for any value of g.

The expression for A can be obtained by substituting into the deter~
minant the values of S ,; 1y » &nd jy- in terms ofju y the values of Zs
and 2 4 in terms of Z; and 22 and expanding by minors. Doing this one ob-
tains the following

2
2 = & Y
A= (Kzy-j) &-[ 25?‘-212223)'1 ~2Ke3 Zogn +avkel fipue - gg 23 3a 1

2 2
* 2 2 2
where A = ZZ (z3z4‘8?1)n ) - 82 E% 22‘}/; » Using the relations §%E—= gg

1%

2 £ 2 2,2
22= ?Zz this becomes A =g1Z2(-§za-2J,i)

[_—%3' Zl‘},;. + L;a - Zs %Z]

Thus, A. = (K zl-‘;,;) K g

2,2
3 a
22(8 ..2)‘



o

” 2 B3, bt g X
A =g .i[(é,,‘) - %L-}fj 2 2z Badet) m—-l ] (4-5)

In order to make N factor of A it is only necessary that

22220 2 3 4e 1% g0 2% -
ERER R R -RR iR GERE 0w

As wes done in the previous sections, the serles elements j,, and {;;will
be regarded as being similar tojn . That 1is, },, = a;nand )u= P jaa o
Also, ),,— will be made such that jiv = & fi. +bj. . The quantities ¢, P,
a, and b are all real, positive constants. Now,

2y =ju +jn +}- = (a+«)/“ + (14b) Ji2s

2, =jaa tjnat s = Jx + (24g)je

Z, =d{,, +;“ +aiw =PJa + (g+g1);u

Substituting these equations into (4-6) and denoting g-& by x leads to
5

Elz((amxmmI:&<1+gntm+<g+g1)J—t(a+o)x+<1+b”"ﬁ'p' +z;5 )

Ilx + (14g)] [ XN (Pxt ghea) _ 57
g

If both sides of this equation are expanded end arrenged in descending
powers of x and if coefficients of like powers of x are made equal, the

four equations shown below are obtained.

Er%(aﬁa) = gzz or (a+¢e)=¢ (4=7)
1+b=¢(1+g) (4-8)
a = P -

b +
+ - = -
1 b+A/K L;g-lz (4=10)
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A
which becomes upon putting in the values of g-;t and ,':'
2 2
z - [ 9 - -
1, [ (a4e) ét*- +(140)] %[a gff +b] - 2f

This is again precisely the same form for Z]_1 as was ottalned in the three
mesh cese and the four mesh case., In order to find the bendwidth ratio
in this instence, assuming‘}u is en inductance equel to L, end j. is &
cepacitance equal to C,, use may be made of the mathematics immediately

following equation (2-2) in Section II. The result is that the bandwidth

2 g2 2
ratio is given by = 20 (a+e) = & ] + L(a=ob
£ =yitut where M= A (ate) - ¢ 1 K(a;)
1- v [(14b) (ate) = 28]

and the quantities a, «, b, and J are interrelated by equations (4-7),
(4-8),(4-9), and (4-10).
Because of the fact that (at+a) is again equal to ¢ use may be made
of the algebra in Section III which alters the form of M from that given
2 2 2
above to -2o¢ -2 -8
oyl lam - -B1f - F

=1 - (4=-11)
[(1+0)¢ - 97-12]72

Since equation (4-2) shows that g, is a function of g and K, equa-
tions (4-8) and (4-9) show that both ¢ and b are functions of g and K
only, Thus, M may be regarded as a function of only two "free" veriables,
nemely & and g, (K is always considered as beiny fixed). The values that
& and g can teke on may be found by requiring that all of the elements
that make up the network be realizable, Thus, it is necessary that a, b,
«, P, and g all be greater than or equal to zero., From (4-9), P 20 1f

>
« = 0,and if & 2 0, From equation (4-10), b 2 0 only when (g+gy) 2 2¢°.
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Lﬂ(l++ 8; » we require that 1+ {-i‘-g—iyl 2 2g or that (1wK) x 2 .

Since gy = ¢
Thus, b ; 0 when g g rl_thK. The condition that « 2 0 15 the same as
the condition & = ¢. From equation (4-8), ¢ = ;—"'33 and from equation(5-10)

b = M vk [1wk-2g?) o d = ¢K+1L2g(]+g2WK(lﬂK- )
WEa) 2 8 WEL)2s(l4e) 2 g (1+8)° (1wE)

-— - - - 2
or ¢ = {K‘;ﬂK!#-ng!&E'ﬂjgz = [yK+#) (“K.q.gg“.gg
2g (1+g) (1wK) 2g (14g) (1wK)

One can interpret these derived conditions by saying that, for all

of the elements to be realizable, the admissible values of & and g must

lie in the closed region of the (a,g) plane bounded by the lines a =0,

‘ X 2
g=0,g= y—‘ztﬂ, and the curve a = § = “‘/Kﬂg)(l*‘zﬁ{)ﬂf . This
2g (1+g) (1K)

region 1s sketched in Figure (18).

The next step 18 to determine whether there are any interior points
of this region at which M is a maxdmum. This, of course, corresponds to
finding whether there 1s a maximum bandwidth ratio. In the three mesh case
the search for & maxima in M wes carried out by noting whether there were
any points in the given region at which the first two partial derivatives
of M were simulteneously equal to zero. In this case the absence of any
interlor points of maximum M is most conveniently demonstrated by consid-
ering%% and %252 insteed of :olving sinulteneously g—}é =0 and :-}é- =0,
The expressions for ’-% and 2’_%2 are quite simply obtained since b and
¢ are functions of g and K only.

The approach to be used depends on the fact that if there is a max-
ima in M at some point in the region then it is necesscry that at that
point ;—% = 0 and %2{-42 <0, If both thece conditions are not satisfied at
any point interior to the admissible region of the (a,g) plane, the may~



imum value of M will be achieved at some point on the boundary of this

region,
Using equation (4-11) and remembering that b and ¢ are not functions

of a wve find that

= -[L) -2g- b o2y Fepam)- 74 22 &) tg/(14b)- ]
[g(14b) - s_]"

or a_g__&[(m,)-m. ]Llﬂ_:ﬂlﬂau . 1t =0 then a =g 2

[g(14b)- & ] e

Thus, for every value of g in the allowed region there is a point (a,g)

vhere :—% = 0 since the restriction on a was that & = ¢ and clearly 1-?:5 <1
2

for all b, It remains to show 3—-}12 > 0 at all points where D—M =0,

Now,

:21((1+b) 2g- b] - (140)(g(140)- EBT° +[¢(l+b)- 'ﬁ]zwb-a(pfb)] 3
[g1+) - £27°

- a_b.(__). _Qb ab(1+b
g(1+)%+ —il—l

or BZM = 228 (an)? -2¢--
[¢(1+b) - -K

Substituting for a its value of ¢ i—E—b yields

2 b2 2 2
og? [(1) -29- 2 1L am)"- B )
= N f . The only term in this expres-
[g(1+b) - 8B

2
22 2 b
sion which could possibly make 5= negative is the term [(14p)°-2¢ - g1.

From equation (4-8),
2(b=g)41 = 2(b= 1+g)+1 = Z.(E..l). 4] = 2gbie-]

1+ °
vk [1+VK-2g2]

Since b = -,
2g(14g) (1K)

vR(1wE-2¢%) +(vF41) (22-1) _ ¥-1)-g? wk-1)

(14g)° (1+E) (1+2)2 (1wE)

2(b-g) A =
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or 2(b=g) A1 = K-l ‘liﬁ!:ﬂ_l Now,

[(1+b) -2¢ - -'4] = Ll b +2(b-g)4 = ﬂ("l)(l‘o/K-Zg ) +'LE'-J= G

v @e)? KT (4g)
- k=1 —1 [(11-) - (i)t gP+wE-gD)] = ———gp
VKR ()02 4t 4g°(1+g)

2
2
From this it can be seen that [(1+b) -2¢ - %] >0 for all K > 1,

This means that %2:“215 always positive at the points where 3;% =0 and
there can therefore be no interior points of the region at which M is e
maximum, Since the highest values of M occur on the boundary, ettention
will be directed to a derivation of expressions for M that apply to the
various segments of the boundery. )

The reduced expression for [(1+b)2-2¢ - %] just derived allows the

general equation for M, equation (4-11), to be written as
K=-1) -8
M=1- — zw: & > (4=12)
(1+g) 4g [g(1+4b)- 5%]

The part of the boundery corresponding to g = O is of no practical
interest because if g = 0 then b and ¢ are infinite. The next part of the
boundary to be considered is the segment corresponding to a =0,

K-1
4¢% (14g)° (140)

When a =0, 0 < g = L.;.‘JJS. and M=1- (4-13)

2 [(4x+2g)(1wx)+2g2]
4e° (14g) (il

T o
From equation(4-10), b = iﬁéﬁ I;ZKIZ X Hence, (14b) =

and M=1- QwE’ (€1) ”
[ wK+2g) QwE)+2g%]

(4"11&)

It can be seen from this that M can be made to vary between some minimum



-5]=

and some maximum value by letting g vary between zero and g = 3 K

2 [ ]
Of course, g can only approach zero as a limit in which case M approaches,
as a limit, the value M = %. When g takes on its meximum value of

= + vK
g 1_2.!._ » M becomes (K-1)

(1K +2/l%~_/1z]2

Physically this corresponds to a strict ladder network because then

M=1 (4=15)

Jis= @ jaa +bj2 1is zero since a and b are both zero. Thus, it is pos-
sible to achieve any value of 3 between the two extremes represented by
the two limiting values of M given above by maeking a = O and selecting

the appropriate value of g. The range of 3 values obtainable when a =0

is shown in Figure (22) as the region between Curve II and Curve III,

The second case of interest is when b = 0; i.e,, when g = L;_'_*LE.

Equation (4-12) yields the fact that when b =0 M is given by
2 2
(x-1) (g% § ) 1 @ &)
2 10 =1t W) /1 +Jx]2 o
4g°(14g) [1+ —E-AL-

Since e is the only variable and ¢ is not a function of &, it can easily

=1-

be seen that minimum M occurs when a is as small as possible and maximum
M occurs when a is as large as possible. The sketch in Figure (18) shows
that for this case a may vary between zero and some maximum value which
is also equal to @, Thus, the minimum value of M when b = 0 is

M=] - (K-Jl.l ) (4"'16)
2000K)(1 + ;/1 + K ]
2
This equation can easily be shown to be equivalent to equation (4~15).

This 1s as it must be because both equations correspond to the same phys-
ical configuration. Thus it is possible, by meking b = O and varying the



value of a, to achieve higher values of M and consequently higher values

of B than were possible by making a = 0, The maximum value of M when
b =0 4s found by letting & = ¢ in vhich case M is given by
2
M=1- (§=1)
2k (1wK) [1 + J._.._L; X ]

-17
2 (4=17)
The region of ,6 corresponding to the case when b = 0 is illustrated in
Figure (22) as that region lying between Curve I and Curve II.

The final case of interest for the five mesh networks is when « = 0,
Then a = @,and the general expression for M labelled (4-12) reduces to

2
= (K-1)
M=1- (4-18)
422K (14g) [14b- %]2

Using the equation for b,

(146 By = LEelb g - K=l vRQwR2e®) wE1) (1w R-26") +20/K(14g)
K K K 2g(14g) Q1 wK) 2g(14g) vK

b, _ k-1+2z(pwk)
or (1+b- K) = % (1g) /% ° Substituting this into (4-18) gives

2
M=1- (f-1) (4-19)

[(k-1)+2g(g+ vK) T

The meximum value of M occurs when g takes on its maximum value of

g = /144K in which case 2
2 (K-1)
M=1a- (4=20)

K [1+ vK+ 2,/1..42:4@]2

This can be shown to be identical to equation (4-17). This must be true

since both expressions hold for the case when b =0 and « = 0, As g 1is

alloved to approach zero the value of M approaches zero so that by taking
the appropriate value of g between zero and g = ,/l..ii’.(. eny value of
2
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£ Dbetween unity and the value corresponding to the M givea by (4-20)

nmay be obtained, These values make up the region shown in Figure (22)
that lies benemath Curve I.

The physical configuration of the metworks corresponding to the three
geparate cases considered and expressions for the component values are
given in Figures (19),(20), and (21). In each case it is possible, after
selecting the desired value of A and K, to calculate all of the compon-
ents in terms of either L, or C,e I, and C, are determined upon speci-
fying the nominal impedance level Z, = /a.rﬁ and the nominal design freq-

°

W
uency £, = 2-?' .

As in the four mesh case, the maximum value of 3 that can be achiev-
ed by using a five mesh network of the type considered is less than the
value of 3 obtainable with an exponential taper network of five meshes
until relatively large values of K are used. However, the values of /£
realizable with the above mentioned network are greater, for every value
of K, than those possessed by the Tschebyscheff taper networks which util-
ize the same number of elements, Also, the possibility of varying £
continuously between unity and some maximum value, at each value of K,
is again in evidence and therefore represents an improvement over the
strict one-to-one A versus K relationships of the Tschebyscheff and ex-

ponential tapers,
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Section V

M™E INPUT IMAGE IMPEDANCE

Until this point in the thesis attention has been directed solely
to determining the bandwidth ratio characteristics end the component vul-
ues of the various network configurations, Expressions for the input image
impedance were derived for the three, four, and five mesh networks and
were used to find the frequencies at which the image impedance became real.
These expressions it turned out were all of the same form, That is, re-

gardless of the number of meshes considered,

By =pn / [(a+e) }u +(240) T~ *(a dur 1) -2g

It is assumed that these networks are to be driven by a voltage
source having a purely resistive impedance and terminated in @ purely
resistive load. The source end load impedances are assumed to be constant,
independant of frequency. Since the image impedance as given above is a
function of frequency, the question arises as to what the source and load
resistances should be to provide an optimum impedance match over the pass
band. In order to arrive at & solution to this problem it will be useful
to determine the shape of the image impedance in the pass band. Of course,
it is only necessary to consider le and Ry because 212 =K le and
R =KR, . (RL and R, are the load and source resistances respectively.)

Now, )u and }.s were previously designated as J»= ijo and ‘j,.. = 3-‘%0—.
(<]

w\_ 2
Using the previcus motation that «’LoC, = () =

5 .
zl1 ) 3%56 )/;Af(a+“)2‘ % 1 - 2 (ate) (14b)- £§] s [(1+b)z- E -1



Y

V4
)/f‘— [(avee § /: o et (10)- 21 [w)’- § - o
)it Go el 2 o2n 2 o2
o o [ §71 [l § ]

Denoting )/g;_ by 2 this equation can be written as

) (H«) - /(“ _ “1)(“ a2) where ny and n

2

are related to the upper and lower cutoff frequencles by ny = -2-1121 and

@y
n2=g-£§2.1ntemof«,a, g, and b

g 2 2
2 Lam) (- 81 - /ol (a4~ 871 + 2(a-c) (1)

2
[(a-l-«)z- % ]

. 2 2
[(2140) (atx)- 8] +/ 2 (a+e)?= 877 4 R(a-od
2 o Laer) )y (aee) - § )+ gleet) (5-2)

[ £

In any given case &, «, n; and w, are fixed quantities and therefore

2
211 may be plotted as a function of the dimensionless frequency n. As an
&id in constructing this plot and for other purposes it is convenient to
daz
determine the maximum value of 2p 5 This will be done by setting a--lz-l
w

equal to zero., For

az -
dnll %[(" "123—" )]' 2[(17 2)211-21:("2-1&)}Zn(nz-ni)(ng-nz) =0,

2
= n% fi, OFr W= Jn, n, . When n takes on this value z:l_1 is equal to

Z which is

3
2) max = Zo) [(ate)"- § ] / ("1"2‘"212("g'"‘-"?-2

" 1172

or Z) max = Zo)/ [ (ate)’- ;"’J (ny = my) (5=3)

1 jmax
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Dimensionless Plot of Input Image Impedance for Frequencies in the Pass Band

(3]
=
1S "
s N L &
//
3 @

Al=9 \
\

N
AN

\
x\‘
§

w = n,[8 (S -1) +1]

AN A
\\ N 4”
‘: \IQJ\ '
= °o
2 5 @ 5 o o

(- #) %  § -z(»nn/ %

l'tz




«60=
Section VI

THE VOLTAGE TRANSFER FUNCTION

In this section the voltage transfer function will be derived for
three circuits of the three mesh type which are subject to various de-
grees of mismatch, Upon graphing these results the degree of mismatch
yielding the best response will become apparents this in turn will assist

in the selection of the proper source resistance for optimum matching.

Using the equivalent T section given in Section I, the impedance
transforming network terminated in a purely resistive load RL and driven
by & source having a voltage E;, and an internal resistance R, may be

represented as shown below,

s A
— A\ ——z, % +

g »—t Ry,

—e

y —>0

E
i

[ X S
N
/]
L>

Writing the circuit equations Eqpn =(R8+Za+zc)11 - Zc12
0 = =2.I, +(RL+Zb+Zc)Iz
Substituting for Z,, 2, and Z, their determinantal equivalents and solv-

ing for 12,

Bin

= = RjzcEin = By, Byp AT
E, IZRL ™ - 2 — N R Az
-1y om 11 115n=81n
e R e

Since AuAnn-Anz, = A & (see Section I), we can write

B - Ry Sun

Bin R AT+ Ryfnnt ReAyg+ A
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A
Now, A._L! =K and 2 -1; /Z; Hence, -P-Q = R:‘ 1: .
Aun vK i (RGR + Koyl )A + 2Reh,

Becguse this is an impedsence transformer RL== K R, and

R, A
L = ! Bt « It has been shown that 21 s can be written as

E 2 2. .»
1
B (Rg2y )A'+ 2Rghny

2

—_ 2 2.,.22 2
2, =3 R /(" «n4) (A n=1") and that the maximum value of z11 is
1
n

- 2 .2
29 mex™ Z/Q "2(P-1) where Q = [(ate) = § ). Let Ry = ¥ Z) poue (¥
is a constant less than or equal to unity and may be regarded as the
mismatch factor.)

E
Substituting the above quantities into the equation for -8- gives

Eyn
the result gn_ - A
e 2By + 2, LA¥ 1y (F -1)8 (r- )(p L ) 'y

y ﬂ2ﬂ1 (8 -1)
For the three mesh network in Section II,

Am =4K),:- Zojie =0 WF - F9E2) ]
=242 - 2/& =;'t'[ (‘J%(T% «1]
snd A‘ =1, =54(3)
- .3
s, B, _ (vK - j“- J;E-]
£33 B 21 AR e mte-1)s (o

?(E@-n’)] 1y
¥ LK (# -1) )’z

2 _
Also from Section II, }-f = "féf A+ VK = (-n281+ vE)

51:"-‘- '}ﬁf +b = (-an’+ b)

%} e jZ' fia a1 = (= (a+e)n+(140) ]



_z? =3§g JuC, = JavLy Cy = § -“i’- = jn. Using the above equalities
°

= 1 - & (anP-b)[r%-(14/6) ]
= ﬂ
(nz-nz) (-p_ n!-ni)
2 [(ah)(n - L—)[n ~(1wK¥F13n "Q[ﬂ -(1wKXrn (a-1)+ 1 ]

yu, o (,d «1)

From this expression the quantity

/ ‘&; may be plotted as a

function of n and ¢ merely by selecting an appropriate combination of a,
«, and b es given in Section II. This calculation was carried out for three
representative circuits and the results are displayed in Figures (24),(25),
and (26). In each case ¥ wes made to teke on the values ¥ = .6, K = .8,
and ¥ =1.0 3 it can be seen that in each case the value ¥ = .8 yielded
the best response. For ¥ = 1.0 the response is extremely flat over the
center portion of the pass band,but the response is poor in that the ef-
fective pass band is narrower than in the cese that ¥ = .8. On the other
hand,while the curve for ¥ = .6 rises at a lower frequency and falls at

8 higher frequency,the considerable dip in the response at mid-band may

be quite undesirable., Thus,one must compromise in the selection of ¥ to
obtain a response which possesses the widest effective bandwidth while

retaining the required degree of flatness.

The curves for ¥ = .8 are combined in Figure (27) to show the differ-
ence in bandwidth possessed by these circuits. The values of a, «, and b
for the circuits corresponding to the various voltage transfer curves are
given at the head of each figure. These seme circuits were constructed
and used to experimentally check the theory, and the curves in Figure (27)

are reproduced for comparison with the experimental results in Section VII,
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Plot of Voltage Transfer Function of Mismatched Three Mesh Network
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oo cocapemsetmes

Plot of Voltage Transfer Munction of Mismatched Three Mesh Network
With a=b =0, «=,25 and K =9
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6

Plot of Voltage Transfer Function of Mismatched Three Mesh Network
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Hggo 27

Combined Plot of Voltage Transfer Functions of the Three Mesh Networks
When Each is Mismatched by the Same Degree, K=9and K,=,8
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Section VII

EXPERIMENTAL RESULTS

In order to check experimentally the derived theory, three networks
of the three mesh type were designed and constructed. It was felt that,
in addition to checking the theory, the experimental results would give
a good indication of how much deviation from the expected results occurred
due to the fect that the actual impedence elements are neither lossless
nor constant with respect to frequency as assumed.

The first step in the design of the networks, which are the same
as those for which the voltaege transfer function was computed in Section VI,
was to select the value of the impedance trensformation ratio K. A com-
promise between a high value of K, which leads to less practical values
for‘},,, and a low value of K, which wuld too closely resemble a sym-
metrical structure, was effected by choosing K = 9, The values for a,

«, and b were selected as follows, In the first circuit a was made zero

and « vas made equal to unity., Hence, from Section II,

b=vK « = 2K =225,
1K
In the second circuit both a and b were made zero, and this choice required
that « = 1_ = 25, This circuit is equivalent to a Tschebyscheff
1wk

taper network having three meshes, The condition « =0 and b = O was

enforced in the third circuit so that an example of maximum bandwidth

would result. This condition mede 2 equal to & = -15-2 = Ba
(1K) 16
The remaining quantities to be specified are
2y = 1%9— and w, = 1 .
»Cq . wLo Co

The choice of wy was dictated by such coneiderations as practicatility
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of element values and ease of measurenent with the result that uwg wus

made equal to wy = 2nf, where f, is 7.5 Mc. . The choice of Zg in each
cese was such that Ry =¥ 2, =50 when ¥= .8,

As an example, the calculations leading to final component values
will be cerried out for the first circuit where a = 0, « =1, and b = 2,25,

1
¥ Lo Cq

= wp =21 £fo = 2n 7.5 x 10% = 47.2 x 105

= =30 _
Now, 23 =2 )'(“"'“)2‘ ﬁ2 (ng = my) = ?% = 62,5, my and 1, are

found from (5-1) and (5-2) respectively to be n,

10285 and ﬂz = 2.2 .

Hence,
Zo = 62,5 = 62,5 = ¢g

/(a-f«)z- a? (r = my) o

2
Thus, Ly, = 2, Coy and Ly = :’21?- . Solving for C, and L, ,
o Yo

=

1 1 -12
Co = = = 310 x 10 farads
Wo Zo (68) 47.2 x 10
2 - -
L, = (68) 310 x 10 12 _ 1.434 x 10 6 henries

All of the remaining element values may be determined from these values
for Cy and Ly «» The circuit corresponding to the values given above is
shown in Figure (28), The element values for the other two circuits were
computed in a similar fashion and are shown in Figures (29) and (30).

The actual method of measurement consisted of measuring the open~
circuit voltage of the source then connecting the circuit and measuring
the voltage developed across the load resistor R for different frequen=-
cies, The results of the test on each eircuit are shown in Figures (28),

(29) and (30), It will be noted that on the graphs w = 2 is labelled 14.75 Mc.
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instesd of 15,0 Mc. as it was designed to be. This is due to a slight

correction in the frequency of the Q-meter used to measure the induct~
ances and capacitances,

The graphs show a very close agreement between the theoreticel and
experimental curves, For the most part, the difference is on the order
of .3db or 3 o/o in the pass band. This close agreement becomes more
important when it is realized that the inductances were relatively low
Q coils. The low self-resonant frequency associeted with airecore chokes
of the large esises required made them unfeasible so that it was necessary
to employ ferrite core coils that had Qg as low as fifteen, but were more
constant with frequency, Thus, it appears that the assumption of elements

being lossless is not too unrealistic.
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Experimental Results With Three Mesh Network Having & =0, « =1,
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Experimental Results With Three Mesh Network Having a =b =0 and
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Section VIII
DISCUSSION AND SUGGESTIONS FOR FURTHER STUDY

The specific bandwidth ratio versus impedance transformation ratio
characteristics ascribeble to the various circuits are discussed at the
points in the thesis where they are derived. It may be said in general
though that the approach used throughout the thesis, namely the design
of the overall network, has enabled the design of circuits that are quite
a bit more flexible than hitherto aveiletle, and, in some instances, per-
mit the realization of larger bandwidth ratios using the same number of
elements,

There are also certain aspects of the networks considered which
have not yet been mentioned but which are points of some interest. The
first of these considerations is in the form of an inherent limitation to
the application of lumped element, impedance transforming networks., It
will be remembered that from epplying the condition gii = K we obtained
the requirement that the total impedance in the last mesh be K times as
large as the total impedence in the first mesh; ie., Z, = K 2,., This
can be interpreted to mean that the capacitors used at the receiving end
will be on the order of K times as small as those at the sending end and
the inductors at the receiving end will be K times as large as those at
the sending end, It seems reasonable to believe that this same situation
is inherent in any impedance tranaforming network because of its very
nature, Frequently this factor governs how large of an impedance trans-
formetion ratio can be made while still using components of reasonable
8ize, For exemple, at an early point in the development calculations

vere carried out for a circuit which would act as a voltage transformer,
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giving a voltage gain of twenty, for frequencies in the first six channels
of the television band. Under the assumption of a source resistence of
50 £ the coils and condensers at the receiving end hed quite practical
sizes, The coil and condenser making up the last series impedance, how-
ever, were on the order of one milli-henry and ten milli-micro-micro
farads respectively - which are completely impracticel. Thus, when large
values of K are contemplated one must be concerned with practicability as
well as realizability of elements. This limitation is independent of the
number of meshes employed.

Another aspect of these networks that may be of interest is what
might be called an inversion property. In Section II and all succeeding
work the elements Ju and ;u were taken to be an inductance Ly and s
capacitance Cq, respectively, If 0}.\4 and ;/z are chosen instead to Le a
capacitance Co and an inductance L, respectively, the variable n = g; is
replaced by % everywhere it occurs, This has the effect of inverting
all of the frequency characteristics with respect to n = % =1, The
new lower and upper cut-off frequencies, f : and f; s are related to the
original lower and upper cutoff frequencies, f; and f,, as followss

" L,C L,C
£y = -2  and f“ = 59 Physicelly, this change in 3.. and j.»
2 2

4n £y 4n £4
amounts to changing all of the original capacitors to inductors and all

of the original inductors to capacitors. Of course, the parameters a,

«, b etc, are unchanged as is the bandwidth ratio ., The practical
utility of this feature is that inversion of the original voltage transfer
function about n = 1 may lead to a more desirable response, and, depending
on the original values of n; and np, converting the network in the de-
scribed fashion may lead to more convenient values of L, and C,. It is

to te realized that this conversion is not equivalent to finding the dual
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of the original network which is also possible.

There are two areas of work not touched upon in this thesis that
would seem to te interesting subjects for further study., The first of
these concerns the synthesis of impedance transforming networks using
nodal analysis, It was briefly mentioned in Section I that the deter-
ninantal condition for image admittance transformation is equivalent to
that for image impedance transformation. ‘rhe advantage of using the
nodal analysis lies in the fact that for networks of four nodes or more
there is no difficulty in constructing a planer network such that all of
the elements on or above the main diagonal in the admittance determinant
are non-zero and independent of each other. Thus, more degrees of freedom
are available than in the case of a similar order mesh system. If these
additional degrees of freedom ere properly exploited it would seem quite
possible that superior performance could be achieved. Of course, compar-
ison of two networks should bte on the basis of equal number of elements
in each network and not on the basis that both networks have the same
number of nodes or meshes,

The second suggestion for future study involves multiple pass band
operation of impedance transformers., In all of the preceding work, steps
were taken to insure that single band pass operation was achieved. It
was for this purpose that A’ vas made a factor of A, If A' is not a
factor of A or if the polynomial in n descriting le is made of higher
order by introducing more complicated elements, le will have more than
one band of frequencies where it is real and there will therefore be
more then & single pass band. One such network was designed and it had
three pass bands of nearly equal widths separated by stop bands. Though

the actusl voltege transfer function was not obtained for this circuit
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and therefore the sharpness of the response i1s not known, it would seem
that this type of circuit might be of some use in situations requiring

impedance transformation over separate bands of frequencies.



Appendix I .
DERIVATION OF REDUCED EXPRESSION FOR [ (1+b)%~2¢ = B ]
Use will be made of equations (3-7) and (3-8) on page 29 which ap-

ply to the general case and are given below,

(A) 14v+ -g: a = g(14g), (8) f;[(lﬂz)a-bki‘ =g 22

2 -
Also, ve have the relation l%.1(1+g) = (gtgy) or g = g3 %5‘:

Substituting into (B) the value of Eé and using (A)

2
__B_.. g
"f(l+g)a b]+ (g (8+81)[1+b+ 81"] or

. .&2_ -3
“ g[]_-l-g— G‘i't;_l)] [ ) 31]b + 8"‘81) 2

E,gzgz-gg:giﬂ.
Solving for a yields & =b+ 2g(g+g 188,

2 2(x.
Using the equation for g, g.l = %%5 and gtgitgg: = (: 1). Also,
- 1 -

2g "(8"'81) --E-L(—EJ.L ml_l __.EL_t

2 2
2(K-g4)" = (g=1) (g3~K) ]
(ei-K) (g3-K) (g%K)2 1 Tiernie

With these relationships the expression for a reduces to

2 2
- 2(K=g4) = (g~1) (25-X) )

e=b 2(K-g,) (K-1) (©

= ‘TLT + [2(Rg)2o(g 1) (£5-K)]
From () g1(] [b 2(K-g,)(K~1) ]

g=b {88 , » f20eg)’ (g o) (30 ] j
g1(1+g) 1"'3 €1 2(K-gy)(K-1)
= 84 - ) = - L = K-

Substituting gt X' l+g = 1+ ‘;g-x" 2 X) I ?;%-Ll;)’

- 77-
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2 2 3 2 2
and 2(K-g3) -(gs1)(g1-K) = =[¢} =3g3+3Kg,+-2K"] the expression for ¢

becones

2 3 2
g=fib+ Kg-xl [1-.(“_".&1).[84'_381+31981+l'£f.]]
1.

2(g%-K) (K-g,) (K-1)

g=fbs [2(g3-K) (K=1) - (g3-3g3+3Kg #K-2k?) ]

or 2K (K-1) (g4-1)

The term in the brackets when expanded is

2Kg? - 2K%- 2g% 42K - g3 + 3g2 - 3Kg, - K + 2K
2 2 3 - 2
or 2Kgy +g; + K= g3 -3Kgy = (g1-1)[K(2g~1)-g%] .
Hence d = z-l b + [l(-(-z-g-l:l)-:gi.]_ (D)
' K 2K (K-1)

2
Consider now the quantity [(1+bf -2f - % ]

2 2_ 2, k-1 K(2g,~1)-g2 )
[(1+b)-2¢-¥]-1+2b+b( x>-2[‘§b+L-§,%a):i§*-1

. K K(K-1)

2
= w2 K=1 K-g4 K=
b X +2b X + KK

2
Thus, [(1+b)2-2¢ - % 1= K_;-(l b + %f-’-]z which is the desired result,

In sddition to this result, use 1s made of equations (C) and (D)., (C) is
used to give the expression for b when a is zero, and (D) is used, in a
slightly different form, to show that ¢ 20 for all admissible g1 and K

vhen a = 0.



Appendix II
2
DERIVATION OF ¢, &, «, AND (9%~ £°) AS FUNCTIONS OF K AND g, VHEN b = 0

The general equations (3-7) and (3-8) on page 29 reduce when b =0 to

2
£g= -
(8) 1+ Ea=¢ %) ad (F) Kzl +3 ¢§§
Also, of course, g = g3 Les
g1-X

Substituting a = Eé[¢(1+g)-1] into equation (F) yields
2
sy + 3 =9 B

2. (14g)+ & = g £04) = (14g)-
Thus, §(14)°~(14g)+ 3 = ¢ Bl o glaag)[ EXELRLL] = (14g)- 3

2 .
Now (1+g)=l-q~§-‘:u, gtg1+g81 = g*é-x—l-)-.and s+81=5"‘£§*y'-

(g4=K) (g1=K) (g1~K)

2
Ronce, ¢ Sy-2) £2(K) (g3°K) . [eezk-(0)]

(6rK) (g2K) &i(gs1) 2(g3K)
¢= Lﬂxﬂiﬂg (G)
2K (K=1)
= - (2Kg 4= -x) K(gs=l 1
To find &, & = Ed(g(14g)-1] = [—-El-il—zx(x_l) _%-T) ]

[ (2Kg =g2=K) (g 1=1)=2(K=1) (22=K

B 2(K-1) (K~g4)

Expanding and reducing the term in brackets

a = L:Ei + Sgi’ 3K§1' K + 2K2]
2 (K=1) (K-g,)

(H)

- "9-



Using (G) and (H)

cog- s LEE) (K oK) - K(-g34+3g%-3Kg mk+2k?) ]

2K (K-1) (K-g,)

3 2 2 3
or = 14K) - 6Kg, + (5K"+ K 2K (1)

2 K (K=1) (K-g4)

Using expressions for ¢ and a

P g Perden)’ (2K oghrB) g - g(K-l)_(gzaK)]z

K 4x2(k-1)? 4 K (K-1)° (K-g4)

_ (g ymg3e X0t (K-g P (.1 04k (208 -g3-K) (8-1) (%K) (K-1)-4R (-1 65K
4 & (k1)° (k-gp)?

., (2Ke~g3K)% (5-K) (1-K) +4X (2K -g3oK) (,-1) (£3-K) (K-1)-4x (k-1)° (%)
4 %2 (k-1)% (K-gy)°

Factoring out of the above expression the term (821'1() (K=1) leaves

o2 2= ‘(_é-x) ['(2K3-1:§,21:K)2+4K(2K8£§?_1°K)(g_é-l) - 4K(K-1) (3311")]
* 4 K2 (K-g)? (K-1)

By direct expansion and collection of terms the quantity in the square

brackets becomes equal to [-gli - k% 81(281 + 6K821 + 41(3]

2 2 2 2 2
Thus, - 8= Lgi-x)[:x(x-g)_- (Ll;x) ] )
4 XK (K=-1) (K-gy)
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Appendix III

DERIVATION OF a AND b AS FUNCTIONS OF K AND gy WHEN « =0
When « = 0, a = ¢ and the general expressions (3-7) and (3-8) reduce to

- _ kg
14+ :; a =a(l+tg) and -g&;[(ug)a-b] +% = -:.{ a

These can be written respectively as

(K) &Eﬂ%ﬁtﬂ = 1+b ad  Efg,(e)kgl=£b-2 (1)
81

[ga(1+g)-Ke] -1 . B1
Hence, Ces(1te)-g] (14b) =b T and

b (gi(1+g)-Kgl - [gi(1+g)-g] =~ gg[si(l*fg)-gl - [g1(1+g)-Kg]

_ g1(1+4g) (g +2g) +2gK
or -b(K-1)g = 22 + 5471-
2 2 42¢%g, - ggy - 2Kg?
From this, b= lE1 2.+ gel ¥ee - gey - He')
2 g° (K-1)

Substituting for g the value g = g4 EEE;} makes the equation for b reduce
€1~
to
2 3
b = [82(K-1) (g3-K) = 2(K-g;)"]
2
2 (K-1) (K-g,)

M)

To determine a, the expression for b as given by (K) is substituted into
equation (L). Then,

KE) o= £)e-1]-
sl gila = B (e £ -1]- 1
g3(£ + &)

g° (K-1)

o
-
=

- :-3—-1 - -g-=§.
a(1-K) g "2 Thus, @ § and since = g.‘f:,



Fnally,

b
Also of use in Section III is the quantity ——-—KF vhen « =0,

From (M), K=
b+ =

Thus,

2 .2, K=
(g3-k) (25 +§ .

.= _ g3k

(K-gy)° (K1)

_ (85K) [2(k-g) + (6500
2 (K-g4)? (K=1)

+ g

b+i:]-.

1) (02-K)=2 (Ko )3
ia'i'[ ga(k-1) (g% x)zz(K&)_ + (K~gg) ]
2 (K-g3)

2 2
b+ lgi(_:g_; = E}i[ gu(k-2) (e3°K) 5 galey K)2
2 (K-g4) 2 (K-gy)

|

2 3
K - g4(K=1)(gy-K)=2(K~g,)
b+R-:i éi[-l Z(K:gi)z +K ]

_ (ga(-1) (g3K) + 2g,(K-g))°]
2 (K-1) (K-gy)’

K.
b+ g _ _ ey(g5K) (K1) _ ]

i 2 2
b4y eerK) (Klvgi(Eg)” |, 2 (Kgy)

(K-1) (gzrl()

()

(0)

-82-
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